Resolution of Fuzzy Relational Inequalities with Boolean Semi-Tensor Product Composition
نویسندگان
چکیده
منابع مشابه
Optimization of linear objective function subject to Fuzzy relation inequalities constraints with max-product composition
In this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.Simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. Also, an algorithm and somenumerical and applied exa...
متن کاملLinear optimization on Hamacher-fuzzy relational inequalities
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of ...
متن کاملLinear optimization of fuzzy relation inequalities with max-Lukasiewicz composition
In this paper, we study the finitely many constraints of fuzzy relation inequalities problem and optimize the linear objective function on this region which is defined with fuzzy max-Lukasiewicz operator. In fact Lukasiewicz t-norm is one of the four basic t-norms. A new simplification technique is given to accelerate the resolution of the problem by removing the components having no effect on ...
متن کاملoptimization of linear objective function subject to fuzzy relation inequalities constraints with max-product composition
in this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. also, an algorithm and somenumerical and applied exa...
متن کاملA tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: 2227-7390
DOI: 10.3390/math9090937